

CONSULTING ENGINEERS

Form Consulting Engineers Limited
Helford House, May Court
Threemilestone Business Park
Truro, TR4 9LD

t: 01872 630 150
e: hello@formconsulting.co.uk
w: www.formconsulting.co.uk

Christine Mitchell
Pier House
The Bank
St Marys
TR21 0HY

Our ref: FC26016
10th February 2026

Dear Christine,

RE: PIER HOUSE, THE BANK, ST MARYS, ISLES OF SCILLY, TR21 0HY – INSPECTION OF ROOF AFTER STORM DAMAGE

Further to our recent visit to the above building and discussions with you after the visit. We write to confirm our findings in relation to the structural condition of the roof as follows:

Storm Damage:

1. Our Chartered Engineer completed a site inspection of the roof structure at the above property on 22nd January 2026 following a request from the property owner for a visual structural appraisal of the roof structure following severe storms on 8th/9th January 2026. The property suffered damage to the main slate roof covering to both the front and rear elevations as shown in the photographs below:

Front elevation showing storm damage

Rear elevation showing storm damage

2. The existing natural slate roof was ripped from the roof structure in many locations. At the time of our visit, the roof had been temporarily repaired with some membrane and new battens to prevent further water ingress.
3. There was also damage to the slate roof covering on the east gable wall where wind has caused the slates to lift up and become dislodged. As the existing slates are wet laid, there would be a greater area requiring replacement as the surrounding slates may be damaged in the process.

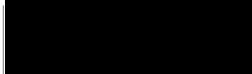
Roof Structure:

4. Form Consulting Engineers were instructed to carry out a visual structural appraisal of the roof structure in order to ascertain if structural repairs will be required. This was requested by the insurance companies Loss Adjuster in communications with the property owner. The roof structure is considered to be the main structural frame that supports the roof covering. Roofing felt and battens are not considered to be a structural element.
5. The property has had a second floor (room in roof) conversion. Therefore, the main roof structure forms part of the second floor bedrooms. Given this, the main roof structure is visible from each of the second floor rooms as shown in the photograph below:

Main roof structure visible from 2nd floor bedroom

6. It can be seen that the main roof structure consists of 'A' frame principal trusses with timber purlins and common rafters over. There is a plasterboard and decorated finish to the underside of the purlins with the main trusses being exposed with a painted finish. This structural form is the same throughout the second floor.
7. There were no signs of structural damage to the principal trusses or the purlins/common rafters above. As expected, the storm had caused the slate covering and some of the roofing battens to lift off as these are the weaker elements of the roof. The purlins and common rafters are of a more robust nature and are able to resist such forces.
8. The main 'A' frame trusses show no signs of degradation and are in a good state of structural repair. There were also no further signs of any water ingress into the property and, therefore, the temporary protection works (roofing membrane and battens) are performing well.

Proposed Works:


9. It is proposed to replace the slate roof covering to both the front and rear elevations of the main property (the more recent rear extension was not damaged in the storm). As stated above, the existing slate roof covering is wet laid which means that each slate is mortared in place. This makes it very difficult to repair and often damages the surrounding slates. Given this, and the age of the roof covering, it is proposed to replace the entire covering of the main roof to both the front (north) and rear (south) elevations.
10. The existing roof structure is capable of supporting a new roof slate covering with a maximum weight of 65Kg/m2. This equates to a Delebole style slate of varied thickness. Most modern slates (Spanish/Brazilian or slates local to the UK) have a maximum weight of 40-50Kg/m2 and are therefore acceptable for the proposed works from a structural perspective.
11. Given that the property is listed; consent will be required from the Council/Conservation Officer for the type of slate proposed to replace the existing roof covering. They will also confirm if a 'clipped' roofing system would be acceptable. In our opinion, given the exposure of the property, a clipped roof slate would give a greater resistance to future storm events.
12. New roofing membrane and treated timber roofing battens will also be required when replacing the roof covering. It is also envisaged that new lead flashings and soakers will be required as well as new lead valley gutters.
13. Should unforeseen defects be found once the roofing works commence, advice should be sought from an Engineer for the most appropriate form of repair. This may include the replacement of rotten timber members on a like-for-like basis.

Conclusion & Recommendations:

14. We conclude that the existing roof structure is in a good state of repair and shows no sign of damage following the recent storm. Our findings are based on a visual inspection only with no opening up works being completed.
15. The proposal to replace the slate roof covering is acceptable (from a structural perspective) provided that the new slate covering weighs less than 65Kg/m2. We have also recommended that new roof membrane and treated timber battens are used throughout these works. The proposed works should be completed by an experienced roofing contractor.

Should you have any questions or require further information, please do not hesitate to contact the undersigned on the number below.

Yours sincerely,

Matt Crompton, BEng (Hons) CEng MICE MIHT
Director - For and on behalf of Form Consulting Engineers Limited